Sliced inverse regression in reference curves estimation
نویسندگان
چکیده
In order to obtain reference curves for data sets when the covariate is multidimensional, we propose in this paper a new procedure based on dimension-reduction and nonparametric estimation of conditional quantiles. This semiparametric approach combines sliced inverse regression (SIR) and a kernel estimation of conditional quantiles. The asymptotic convergence of the derived estimator is shown. By a simulation study, we compare this procedure to the classical kernel nonparametric one for different dimensions of the covariate. The semiparametric estimator shows the best performance. The usefulness of this estimation procedure is illustrated on a real data set collected in order to establish reference curves for biophysical properties of the skin of healthy French women.
منابع مشابه
Reference curves estimation via Sliced Inverse Regression
In order to obtain reference curves for data sets when the covariate is multidimensional, we propose a new methodology based on dimension-reduction and nonparametric estimation of conditional quantiles. This semiparametric approach combines sliced inverse regression (SIR) and a kernel estimation of conditional quantiles. The convergence of the derived estimator is shown. By a simulation study, ...
متن کاملLocalized Sliced Inverse Regression
We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.
متن کاملLikelihood-based Sufficient Dimension Reduction
We obtain the maximum likelihood estimator of the central subspace under conditional normality of the predictors given the response. Analytically and in simulations we found that our new estimator can preform much better than sliced inverse regression, sliced average variance estimation and directional regression, and that it seems quite robust to deviations from normality.
متن کاملSufficient dimension reduction in regressions across heterogeneous subpopulations
Sliced inverse regression is one of the widely used dimension reduction methods. Chiaromonte and co-workers extended this method to regressions with qualitative predictors and developed a method, partial sliced inverse regression, under the assumption that the covariance matrices of the continuous predictors are constant across the levels of the qualitative predictor. We extend partial sliced i...
متن کاملOn Sliced Inverse Regression With High-Dimensional Covariates
Sliced inverse regression is a promising method for the estimation of the central dimension-reduction subspace (CDR space) in semiparametric regression models. It is particularly useful in tackling cases with high-dimensional covariates. In this article we study the asymptotic behavior of the estimate of the CDR space with high-dimensional covariates, that is, when the dimension of the covariat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2004